Reverse Osmosis (RO) systems excel at removing water impurities, but few are aware that they also remove the beneficial minerals. In fact, the reverse osmosis process removes 92-99% of beneficial calcium and magnesium. What’s the big deal?

After analyzing hundreds of scientific studies concerning demineralized or reverse osmosis water, the World Health Organization released a report stating that such water “has a definite adverse influence on the animal and human organism.”

Consumers have been so concerned with removing as many things from water as possible that they have forgotten to ask if the resulting water actually improves health or causes health problems. It’s assumed that no toxins equals better health, but there is simply more to healthful water than a lack of toxins, as the World Health Organization clearly points out.

What is alarming is that consuming reverse osmosis water for even just a few months can create serious side effects. “The effects of most chemicals commonly found in drinking water manifest themselves after long exposure.” However “only a few months exposure may be sufficient ‘consumption time effects’ from water that is low in magnesium and/or calcium. Illustrative of such short-term exposures are cases in the Czech and Slovak populations who began using reverse osmosis-based systems for final treatment of drinking water at their home taps in 2000-2002. Within several weeks or months various health complaints suggestive of acute magnesium (and possibly calcium) deficiency were reported. Among these complaints were cardiovascular disorders, tiredness, weakness or muscular cramps.” Again, serious side effects within just several weeks or months.

Calcium (Ca) and magnesium (Mg) are both essential elements. Ca is a substantial component of bones and teeth. In addition, it plays a role in neuromuscular excitability, the proper function of the conducting myocardial system, heart and muscle contractility, intracellular information transmission and the coagulability of blood. Mg plays an important role as a cofactor and activator of more than 300 enzymatic reactions including glycolysis, ATP metabolism, transport of elements such as sodium, potassium, and calcium through membranes, synthesis of proteins and nucleic acids, neuromuscular excitability and muscle contraction.

Although drinking water is not the major source of our calcium and magnesium intake, the health significance of supplemental intake of these elements from drinking water may outweigh its nutritional contribution expressed as the proportion of the total daily intake of these elements. Even in industrialized countries, diets not deficient in terms of the quantity of calcium and magnesium, may not be able to fully compensate for the absence of calcium and, in particular, magnesium, in drinking water.
Although drinking water, with some rare exceptions, is not the major source of essential elements for humans, its contribution may be important for several reasons. The modern diet of many people may not be an adequate source of minerals and microelements. In the case of borderline deficiency of a given element, even the relatively low intake of the element with drinking water may play a relevant protective role. This is because the elements are usually present in water as free ions and therefore, are more readily absorbed from water compared to food where they are mostly bound to other substances.

Since the early 1960’s, epidemiological studies in many countries all over the world have reported that water low in calcium and magnesium is associated with increased morbidity and mortality from cardiovascular disease.

Recent studies also suggest that the intake of water low in calcium (reverse osmosis water), may be associated with higher risk of fracture in children (Verd Vallespir et al. 1992), certain neurodegenerative diseases (Jacqmin et al. 1994), pre-term birth and low weight at birth (Yang et al. 2002) and some types of cancer (Yang et al. 1997; Yang et al. 1998). In addition to an increased risk of sudden death (Eisenberg 1992; Bernardi et al. 1995; Garzon and Eisenberg 1998), the intake of water low in magnesium seems to be associated with a higher risk of motor neuronal disease (Iwami et al. 1994), pregnancy disorders (so-called preeclampsia) (Melles & Kiss 1992), and some types of cancer (Yang et al. 1999a; Yang et al. 1999b; Yang et al. 1999c; Yang et al. 2000).

Recent epidemiological studies suggest that reverse osmosis water may be a risk factor for hypertension and coronary heart disease, gastric and duodenal ulcers, chronic gastritis, goitre, pregnancy complications and several complications in newborns and infants, including jaundice, anemia, fractures and growth disorders.

When used for cooking, reverse osmosis water was found to cause substantial losses of all essential elements from food (vegetables, meat, cereals). Such losses may reach up to 60 % for magnesium and calcium or even more for some other micro-elements (e.g., copper 66 %, manganese 70 %, cobalt 86 %). In contrast, when mineralized water is used for cooking, the loss of these elements is much lower, and in some cases, an even higher calcium content was reported in food as a result of cooking.

The current diet of many persons usually does not provide all necessary elements in sufficient quantities, and therefore, any factor that results in the loss of essential elements and nutrients during the processing and preparation of food could be detrimental for them.

In a multi-city study, women living in cities with low-mineral water more frequently showed cardiovascular changes (as measured by ECG), higher blood pressure, somatoform autonomic dysfunctions, headache, dizziness, and osteoporosis (as measured by X-ray absorptiometry) compared to those of cities with higher mineral content water.


Leave a Reply

Your email address will not be published. Required fields are marked *

Name *